Modeling Ac Arc Re-ignition Conditions on Ice -covered Insulators Using Artificial Neural Networks

نویسندگان

  • Boubakeur Zegnini
  • Djillali Mahi
چکیده

The propagation of local arcs are necessary for a flashover to occur on an ice-covered insulator. It was supposed that the local AC arc extended when it satisfied the arc re-ignition conditions. In this paper an attempt has been made to model Va = f ( I , L , x ) for estimating the arc re-ignition conditions as function of leakage current and insulator length using multi-layer feed-forward neural network with back propagation technique. Once trained with experimental results taken from the CIGELE model , the proposed ANN model is then capable of predicting arc maintenance voltage , under any given set of leakage current and insulator length. With the use of the optimized ANN parameters , a prediction accuracy with a %MAE of 2.85% was achieved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and zoning of land subsidence in the southwest of Tehran using artificial neural networks

The earth's surface, due to its natural conditions and its structure is always changing and reshaping. One of the created deformations is the land subsidence. This is the most dangerous events which can be seen in most urban areas especially in the agricultural plains today. This study aims at zoning land subsidence and recognition of geometrical factors in southwest of Tehran. To estimate and ...

متن کامل

The Recognition and Detection Technology of Ice- covered Insulators under Complex Environment

In order to avoid the impacts of outer factors on the ice-covered insulators recognition, such as weather, seasons, outside illumination changes, acquisition time, image background and image contrast, a general algorithm which can recognize and detect the ice-covered insulator accurately in a complex environment is put forward in this paper. With the video monitoring device, the image informati...

متن کامل

Prediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh

Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...

متن کامل

Yarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms

Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...

متن کامل

Hardness Optimization for Al6061-MWCNT Nanocomposite Prepared by Mechanical Alloying Using Artificial Neural Networks and Genetic Algorithm

Among artificial intelligence approaches, artificial neural networks (ANNs) and genetic algorithm (GA) are widely applied for modification of materials property in engineering science in large scale modeling. In this work artificial neural network (ANN) and genetic algorithm (GA) were applied to find the optimal conditions for achieving the maximum hardness of Al6061 reinforced by multiwall car...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005